
WHY JAVA IS NOT SUITABLE FOR OBJECT-ORIENTED FRAMEWORKS

Background
We have worked on a large-scale (i.e., over 700 classes and almost 9,000 methods) eBusiness Java project. We’ve observed
tensions between generic and domain-specific object-oriented frameworks, and the Java programming language. Here are
some of the highlights of our experience with using and refactoring rich Java frameworks.

Java doesn’t Support Covariant Return Types

Problem
Framework developers tailor white-box frameworks through class composition. Typically customization involves objects
that receive messages and objects returned by messages. The former requires subclass polymorphism, and the latter
requires covariant return types. Java subclasses can’t change the return type of an inherited method to a subtype. You can
customize framework objects through inheritance. However, messages
sent to these objects will return generic framework objects instead of
application objects.

Why does this matter?
The lack of covariant return types affects:
• Simple messages like accessors
• Idioms like polymorphic copy
• Design patterns like Factory Method, Manager, Singleton, etc.

Question
How can you customize a Java framework through inheritance?

Java’s Static Type Checking Provides a False Safety Net

Problem
Java is intended for building robust, reliable, and secure software. One of the mechanisms used to achieve these goals is
static type checking. However, without covariant return types using Java frameworks involves explicit type casts from a
framework generic type to an application-specific type. For
example, even the containers from the Java class library require
developers to cast down from Object.

Why does this matter?
Static type checking catches many of the trivial mistakes that
seasoned developers and unit tests would discover anyway.
However, it can’t guarantee that a cast will succeed. Application
developers may think that they have fixed all type errors once
the type checker signals it. At run time the virtual machine will
throw a ClassCastException for any explicit cast that fails. If
uncaught, this run time type error will terminate the application.

Question
How can you ensure that crossing from the framework realm to
the application realm won’t produce a ClassCastException?

RemoteException = Coupling

Problem
Well-crafted distributed system exhibit low coupling between the subsystem and object design, and the deployment pack-
aging structure. Developers fine-tune the system by repartitioning the functionality between the server-space and the client-
space. Java provides native support for distributed programming through RMI. However, the explicit catch blocks required
by RemoteException effectively hardcodes an object’s location within the code.

Why does this matter?
The above problem introduces coupling between
domain objects and their location. Refactoring
components from server-space to client-space
involves wrapping remote message sends in try-
catch blocks. This hinders the developers’ ability
to experiment with concretizing object locations
when fine-tuning distributed applications.

Question
How can you reduce the coupling between your
objects and the deployment location when using
RMI?

+getContext() : Context

-context : ContextI

ContextManager

+geContext() : MyContext

MyContextManager

Context

MyContext

Deprecation through Comments is Easy to Miss

Problem
As frameworks evolve, new components replace old ones. To transition smoothly, framework developers should be able to
phase out the old components in a controlled way, giving framework users adequate time to update application code. Java
lets developers deprecate methods, classes, or interfaces. However, Java hides this important tag in a comment, thereby
reducing its visibility. When browsing code to work out how to use it, most developers look at the class and method defini-
tions first.

Why does this matter?
Developers have to read the tags
embedded within comments as well as
the source code. They could easily miss
methods, classes, or interfaces marked
as deprecated.

Question
How can you mark deprecated meth-
ods, classes, and interfaces in a way
that is not easy to miss?

Class Composition Requires Visible Source Code

Problem
Developers use and customize object-oriented frameworks through a combination of class and object composition. Typi-
cally frameworks start as white-box, with inheritance as the mechanism for using them. As they mature, they become
black-box, and object composition replaces (most of the) class composition. Access to the source code is crucial, particu-
larly at the beginning of frameworks evolution. Java lets developers separate the source from the byte codes. Although the
core JDK classes ship with source code, developers don’t have to do so. Typically third party frameworks and libraries ship
as class files with no source.

Why does this matter?
Without source code:
• You can’t have white-box frameworks; you’ll have

immature black-box frameworks
• You can’t see how the framework really works
• You can’t extend the framework beyond what its

developers imagined
• You’ll have a hard time fixing bugs

Question
How can you ensure that your users have access to the
framework’s code?

Static Type Checking Dependencies Prevent Independent Development

Problem
You have a system that is broadly split into two parts, A and B, who share one common object—let’s call it Customer.
Customer is a collection of discrete business objects, some from A and some from B. These objects’ interfaces project as
methods on Customer. The groups working on A and B want to work independently, and it is meaningful at a systems level
to do so (i.e., A can perform a lot of things using Customer without B’s code being there). However, if the group working
on A wants to compile their code—including Customer—the compiler also needs access to most of B code.

Why does this matter?
This type of compile dependency causes the following prob-
lems:
• Sharing code can be troublesome for groups working in

different physical locations
• Compile issues in one group can often leave the other

group unable to test their work, even in the presence of
good version control

• You pollute your system through building lots of interfaces
to stop compile dependencies

Question
How can you prevent the static type checking dependencies
from interfering with your breaking the system in indepen-
dent parts?

White-box framework Black-box framework

Class composition Object composition

Immature Mature

Object1 Object2 Object3

RemoteMessage1

Return1

RemoteMessage2

Message3

Return3

RemoteMessage4

Return4

Server space Client space

The messages
crossing the
client-server

boundary (shown
in red) can throw
RemoteException

Dragos A. Manolescu
dragos.manolescu@acm.org

Adrian E. Kunzle
adrian@kunzle.com

«subsystem»
SubSystem A

«interface»
CustomerI

«subsystem»
SubSystem B

Customer

Desired
Compile

Set

Enforced
Compile Set

About Us
Dragos A. Manolescu has earned a Ph.D. in Computer Science from the University of Illinois and now teaches at the University of Kan-
sas. He is also consulting in object-oriented workflow in particular, and object technology, software architecture, frameworks and pat-
terns in general. Visit Dragos on the Web at http://micro-workflow.com/.
Adrian E. Kunzle has a 9 year history of building and architecting large distributed object systems for both financial institutions and
eBusiness companies. His language of choice is Smalltalk, but earns a living writing Java. He is constantly fascinated by the human side
of systems development. Adrian is currently the CTO of a new B2B startup focusing on Internet conversion marketing.

FwObject1

FwObject2

FwObject3

AppObject1

AppObject2

AppObject3

Application realm

Framework realm

Explicit cast:
(AppObject3)anFwObject3

