
Why Java is Not Suitable for Object-Oriented
 Frameworks

Dragos A. Manolescu
Applied Reasoning Systems Corporation and the

University of Kansas
10955 Lowell Ave. Suite 300
Overland Park, KS, 66210

+1 (913) 319 0900

dragos.Manolescu@acm.org

Adrian E. Kunzle
Skillgames

233 Broadway, 19th floor
New York, NY 10279
+1 (212) 471 3514

adrian.kunzle@skillgames.com

ABSTRACT
Many business applications involve Java and object-oriented
frameworks. Several characteristics of Java conflict with some key
features of frameworks. These conflicts force the creation of
“work-arounds” by developers. We show several examples that
illustrate the tensions that exist between Java and object-oriented
frameworks, and discuss how we solved them.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and
Features – classes and objects, constraints, frameworks,
inheritance.

General Terms
Languages.

Keywords
Java, Object-Oriented Frameworks.

1. JAVA DOES NOT SUPPORT
COVARIANT RETURN TYPES

The Java type system doesn't support covariant return types
(i.e., subclasses can't change the return type of an inherited
method to a subtype). The lack of covariant return types has a
significant impact on how developers use Java. This ranges from
simple messages like accessors, through idioms like polymorphic
copy, through design patterns like Factory Method, Manager or
Singleton [1]. In effect, Java's type system introduces roadblocks
that developers must code around. Sometimes they may get
around with a type cast. Other times, to avoid downcasting, they
may have to widen the API with methods that simply narrow the
return type (e.g., getMySessionContext vs.
getSessionContext). This makes applying the white-box and
black-box reuse techniques specific to object-oriented frameworks
cumbersome [2]. It also breaks layering, making developers aware
of the objects at different levels of abstraction.

2. JAVA'S STATIC TYPE CHECKING
PROVIDES A FALSE SAFETY NET

Java is intended for building robust, reliable, and secure
software. One of the mechanisms used to achieve these goals is
static type checking. We have studied how well this works on a

large-scale.1 eBusiness project involving several object-oriented
frameworks [3]. Java's static type checking catches mainly trivial
mistakes that seasoned developers and unit tests would catch
anyway, without guaranteeing the elimination of run time
problems. Without covariant return types, many Java frameworks
involve explicit casts from a framework generic type to an
application-specific type (customization through class
composition is typical in white-box frameworks [4]). The
compiler doesn't check casts. At run time the Java virtual
machine reports casting problems by throwing a
ClassCastException and usually terminating the application.
Catching these exceptions involves a significant amount of
manual type checking. This cycle greatly reduces the value of
simple compile time type checking.

3. REMOTE EXCEPTION = COUPLING
Well-crafted distributed systems exhibit low coupling

between the subsystem and object design and the deployment
packaging structure. Once developers start to learn how an
application performs in a distributed environment, they fine-tune
it through re-partitioning the functionality between the server-
space and the client-space. This requires the ability to relocate
components around the client-server boundary seamlessly. Java
supports distributed programming natively through RMI. Java's
RMI RemoteException subclasses Exception and requires
explicit catch statements. This violation of the Liskov
Substitution Principle2 essentially introduces coupling between
domain objects and their location. Refactoring components from
server-space to client-space involves wrapping remote message
calls in try-catch blocks, which translates into hard-coding the
location within the code. In effect, it hinders developers' ability to
experiment with “concretizing” object locations when fine-tuning
distributed applications [5]. It also litters the code and makes
maintenance harder.

1 The project involves over 700 Java classes and almost 9,000

methods.
2 The Liskov Substitution Principle (LSP) states that modules
using references to base types must be able to use references to
derived types without knowing the difference.

4. ADDITIONAL PROBLEMS

4.1 Visible source code
Java lets developers separate the source from the byte codes.

Although the core JDK classes ship with source code, developers
don't have to do so. Typically third party frameworks and libraries
ship as class files without source. But not having framework
source code hampers your project. You can't see how the
framework works; you can't add hooks that the original
developers never thought would be needed; you'll have a hard
time finding bugs. In short, you have to hope that the framework
developers thought of all the things that you might possibly want
to do with it, or else you are groveling at their door. The
increasing popularity of the Open Source model provides a clear
sign that developers benefit from having access to the source
code. Note that distributing source code doesn't hinder the
business aspect; Smalltalkers have made money for over 20 years
from applications shipped with source code.

4.2 Deprecated is a comment instead of a
reserved word
As frameworks evolve, some of their components become
obsolete. Java lets developers deprecate methods, classes, or
interfaces. This allows for the phasing out of functionality in a
controlled way, giving framework users adequate time to adapt
their code to the new mechanisms. However, Java hides this
important tag in a comment, thereby reducing its visibility. When
looking at a class to work out how to use it, most developers look
at the class and method definitions first. It would make more
sense for “deprecated” to be a keyword and to live in the
definition (e.g., public static deprecated void MyClass())

 rather than in the comment. This would make compiler parsing
easier, and would increase the visibility of this useful function.

5. SUMMARY
We have sketched the impedance mismatch between object-

oriented frameworks and the Java programming language. More
specifically, we have described some of the problems we
encountered on a large Java project involving several frameworks.
Software developers walking this path will benefit from our
discussion. They will understand the tension between object-
oriented frameworks and Java, and will learn how we dealt with it.

6. REFERENCES
[1] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design

Patterns. Addison-Wesley, Reading, MA 1994.

[2] Johnson, R., and Foote, B. Designing Reusable Classes.
Journal of Object-Oriented Programming, June/July 1988,
Volume 1, Number 2, pages 22-35.

[3] Manolescu, D., and Kunzle, A. Several Patterns for
eBusiness Applications. Proceedings of Pattern Languages of
Programs 2001, Monticello, IL, USA. Available on the Web
from http://micro-workflow.com.

[4] Roberts, D., and Johnson, R. Patterns for Evolving
Frameworks. In Martin, R., Riehle, D., and Buschmann, F.,
editors. Pattern Languages of Program Design, Volume 3,
Addison-Wesley, Reading, MA 1997.

[5] Waldo, J., Wyant, G., Wollrath, A., and Kendall, S. A Note
on Distributed Computing. Sun Microsystems Laboratories,
Inc. Technical Report SMLI TR-94-29, November 1994.

	JAVA DOES NOT SUPPORT COVARIANT RETURN TYPES
	JAVA'S STATIC TYPE CHECKING PROVIDES A FALSE SAFETY NET
	REMOTE EXCEPTION = COUPLING
	ADDITIONAL PROBLEMS
	Visible source code
	Deprecated is a comment instead of a reserved word

	SUMMARY
	REFERENCES

