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1 Introduction

Thad Starner’s article from the January 2002 issue of Computer focuses on improving the functionality of soft-
ware for personal wireless devices [7]. Starner proposes a shift from thin to thick clients as an easy route to
achieving this goal. He argues that if the technology trends continue to evolve as they have done throughout the
last decade, wireless devices will have comparable amounts of disk storage, RAM, and CPU power with primary
general-purpose computing devices.

While technology will undoubtedly continue to advance, Starner’s analysis doesn’t take into account impor-
tant factors like software development costs, application deployment, security, integration with existing infras-
tructure, and licensing costs. In this article | revisit the topic and examine the characteristics of thin and thick
clients in the context of personal wireless devices. | argue that the thick client approach won't cause thin clients
to go extinct. Neither approach is perfect, and I'll point out several characteristics of thin clients that make them
more attractive than thick clients. As an example, | discuss how Mobile Classic Blend, a Java technology for
personal wireless devices exploits the characteristics of the thin client approach while dealing with the constraints
imposed by current technology.

2 Background

Thin and thick clients are different sides of the same coin. The coinis client-server, and deals with the partitioning
of functionality between the client and the server. The server side provides services and “serves” requests from
clients. Depending on the amount of processing that it performs, clients are either thin of thick.

The thin client approach dates back from the days of mainframes. In those days hardware was locked behind
doors in air-conditioned rooms. People didn't have direct access to it. Instead, they used “dumb” terminals. All
processing took place on the mainframe, and the terminals simply handled paper (and later on CRT) output and
keyboard input. Because of the very little amount of processing carried out by these terminals, they were called
thin clients

The dawn of the PC era opened the doors to new possibilities. The CPUs, memory, and storage capabilities
of personal computers enabled them to run their own programs, independently from the server. Gradually, as PCs
processing capabilities increased, software moved from the server to the client. Currently servers host only a few
enterprise-wide applications (e.g., databases). The bulk of the software rtmslonlientsand interacts with
dedicated servers only for special services.

3 Thin Clients for Personal Wireless Devices

With the advent of affordable and powerful personal computing, some people believed that thin clients were
gone. They were wrong. The Web has resurrected the thin client approach. Server-side programming is back in
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style again. With the Web making inroads in the wireless market, our personal wireless devices are going to act
like 21st century 3270s as long as the Web remains sever-centric.

However, after more than a decade of experience with thick clients we are now in a better position to evaluate
the two approaches. While the thick client approach has opened new doors, we have also discovered problems for
which the thin client approach remains a better fit. Therefore, we should not dismiss the thin client approach and
wait for technology to catch up. Instead, we should rethink it and capitalize on its benefits while incorporating
the lessons we've learned since it went out of style.

Let's consider the following characteristics:

Development costBuilding software for PDAs is quite different compared to building software for desktop
computers. Things that are different include the programming languiage [8], the programming style [4],
and the development tools [3, 1]. This translates into developer retraining and retooling—an expensive
proposition. Through leaving the application on the server, the thin client approach minimizes client-side
development.

Integration with existing infrastructure Corporations have invested large amounts of money in wireline tech-
nology for their Web-enabled applications. Acquiring new infrastructure to add support for wireless de-
vices represents an expensive endeavor. Businesses would rather amortize their current technology invest-
ments and gradually expand their market to wireless customers. Through reusing existing server-based
applications, thin clients can integrate with the current infrastructure and allow for a smooth expansion at
a fraction of the cost.

Instantaneous deploymentSoftware changes in time. Developers add new functionality or fix security holes.
Updating software over the Internet generally requires user involvement and poses security risks. Through
using server-based applications, the thin client approach allows developers to deploy new applications as
well as update existing applications instantaneously.

Improved security Starner suggests that in the future users may replace their general-purpose computers with
mobile systems. In fact, this depends on the type of data you're dealing with. Corporations won't allow
their employees to carry sensitive enterprise data on mobile devices. Instead, they would prefer them
connecting to enterprise servers, where the corporation has direct control over regulating and monitoring
the access. Additionally, should the device fall into the wrong hands, the liability is higher if it contains
full-fledged applications or confidential records. Even with encryption, the chances of it being broken
while in the possession of a cracker are much higher [6]. Through holding mainly remote GUIs for server
applications instead of enterprise data and applications, thin clients have lower liability from a security
standpoint.

Reduced cost of ownershipTypically software licenses charge a per-CPU fee. Thick clients require a license
for each client. For large installations this may yield an expensive bottom line. Through having many users
share server-side applications, the thin client approach reduces the cost of ownership.

The above characteristics suggest that the thin client approach has several advantages over the thick client
approach. Generally the challenge lies in striking the right balance between the type of processing that takes
place on the client, and the type of processing that takes place on the server. In the context of personal wireless
devices additional challenges stem from the peculiarities of wireless connectivity and the limitations of current
technology. Let’s look at how a thin client for personal wireless devices addresses these issues while exploiting
the above characteristics.



4 Mobile Classic Blend—A Thin Client for Personal Wireless Applications

A successful thin client for personal wireless applications must deal with an array of constraints. A first set of
constraints pertains to pocket-sized devices in general: limited processing power and memory space [4]; reduced
screen real estate and limited input capabilities [5]. Another set of constraints pertains to wireless devices: limited
bandwidth; disconnected operation; expensive airtime. While the constraints specific to small devices have been
dealt with in the past, Web-enabled mobile phones are bringing the second set of issues under the spotlight.

The above constraints make building Internet applications for mobile phones a challenging task. Several
technologies attempt to address these challanges. [Briefly discuss WAP and Web clipping.] However, these
attempts leave a wide gap between what these technologies provide and what mobile users really want.

Mobile Classic Blend is a Java technology that closes this gap by leveraging the processing capabilities
of mobile clients and a bidirectional data transfer protocol. The technology lets you develop and run server-
based Internet applications on personal wireless devices. By exploiting the thin client approach, developers build
wireless applications with as little regard as possible for the idiosyncrasies and limitations of the target device.

The Mobile Classic Blend architecture consists of a presentation server and a thin client. The presentation
server can run standalone or within an existing application server such as BEA's WebLogic or IBM’s WebSphere.
It integrates with existing server-side technologies such as servlets, JSPs, and RMI. The thin client consists of GUI
specifications which describe how applications interface with the users. Additional server and client components
implement the bidirectional data transfer protocol and other services like object serialization, transparent for the
application programmer. For maximum portability, the architecture leverages the Java platform on the client
(J2ME) as well as on the server (J2SE/J2EE). The current version Mobile Classic Blend uses IBM’s J9 virtual
machine [2] on the client, which adds around 100K to the client side. Figure 1 shows the server and client
components, as well as their position next to wireline browser-based and thick client applications.

Next let's examine how Mobile Classic Blend solves the problems specific to personal wireless devices while
providing an attractive platform for building and deploying mobile Internet applications.

5 Technology and Business Issues

What makes a thin client approach like the one described in the previous section attractive? The key factor stems
from the thin client approach being feasible now, with current technology. In contrast, Starner doesn’t provide
an immediate solution; moving to thick clients requires waiting for the technology to become available. Other
factors include gradual expansion to new markets, real-time notifications, and reduced development effort. Here'’s
how these factors line up.

Compatibility with current wireless technology Due to its server-centric model, thin-clients typically involve

more client-server traffic than thick clients. This traffic is subject to the bandwidth limitations specific to wireless
devices. Current wireless networks (i.e., 2G) have bandwidth in the range of 9.6 through 19.2 Kbps. Mobile
Classic Blend addresses this limit in two ways. First, it uses a communication protocol optimized for low-
bandwidth connections. The protocol provides bidirectional, live data exchange between the client and the server.
Second, the client side uses the native widgets of the wireless device. This preserves the look-and-feel of the
deployment platform while eliminating full-page refreshes. The combination represents a radical departure from
the unidirectional, heavyweight solutions typical of HTTP/HTML-based applications.

Real time, wireless servers The Mobile Classic Blend doesn’t aim at replacing wireline access. Instead, it
augments it when end users need wireless, real time connectivity. The integration with existing infrastructure lets
users quickly transform existing J2EE servers into real time wireless servers.
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Figure 1. The Mobile Classic Blend architecture consists of a presentation server (depicted here within an Ap-
plication Server) and a thin client.




Application wake-up and server push People with personal wireless devices need them because they can
benefit from being mobile and connected. Sometimes they need to know promptly whenever time-sensitive
information changes, and act upon it. Mobile Classic Blend leverages carrier-supported messaging to notify
devices in real time, even when they are disconnected from the Internet. The wireless device wakes up and
requests a connection to the server in response to the notification. Once the connection is established, the server
can push data to the device. In effect, this mechanism gives the illusion of always-on applications and allows
for location-based services. Additionally, since messaging costs less than regular airtime, using the messaging
service significantly lowers the operational costs.

No device programming Mobile Classic Blend reduces client side programming to composing widgets. The
only programming takes place on the server, where developers write Java code with the tools and within the de-
velopment environments they already know. In effect, this programming model lets you reuse existing resources,
knowledge, tools, and environments.

6 Other Challenges

Several characteristics of personal wireless devices make the thin client approach a hard problem. First, unlike
wireline computers, the connectivity is intermittent. Second, the synchronization with users data must take into
account changes made on both devices. Let's discuss these challenges in more detail.

Wireless network access means intermittent connectivity. Therefore, applications must provide support for
disconnected operation: they must tolerate the temporary loss of connectivity. This must remain transparent for
the user, who should still be able to use the application. This involves caching some information on the client
(i.e., wireless device). For example, consider a mail agent. Sending and receiving email depends on it being
connected to the Internet. But people should still be able to use it when the connection is lost. For example, you
should be able to compose messages and queue them locally until the connection is reestablished. But is this a
thin client or a thick client?

Synchronization with a user's main computer is another important thing. Once people have more than one
computer, they can easily loose track of which one holds the latest versions of their files. They may end up
making different updates to the same file. Synchronization should perform a smart merge.

7 Summary and Conclusion

An increasing number of personal devices provide wireless network access. The ability to connect mobile users to
the Internet has opened the doors to new possibilities. It has also brought under the spotlight several challenges for
people building software for personal wireless devices. Dealing with the constraints typical of portable devices
and the constraints typical of current wireless technology makes building software for these platforms a hard
problem.

Personal devices trade form factor and convenience for power. Current wireless devices solve the above
problems by adopting a thin client approach, which relies on a server that performs most processing. But as
technology continues to advance, the processing capabilities of personal devices will improve to the point that
they will no longer need server-side processing. They will become thick clients. Would this cause the thin client
approach to go extinct?

In this paper I've discussed several characteristics that make the thin client approach a viable alternative to
thick clients. Traditionally thin clients act as simple interfaces that merely take the user input to the server, and
the server output to the user. But in the context of wireless devices the thin client can capitalize on its processing
capabilities and find a balance that works in its advantage. As an example, | have presented Mobile Classic



Blend, a Java technology that uses the thin client approach to provide responsive, Internet applications on current
generation wireless phones.

Thin-clients won't go away. Smatrt thin-clients that run responsive Internet applications are available today
and run on the current generation of wireless devices. We should not dismiss this approach and use it whenever
we need its benefits.

References

[1] Borland  Software  Corporation. jBuilder  MobileSet. On the Web at
http://www.boriand.com/jbuiider/mobiieset/.

[2] IBM. Ibm j9 virtual machine. On the Web Attp://www.embedded.oti.com/learn/vaesvm.html.
[3] IBM. VisualAge Micro Edition. On the Web at http://www.embedded.oti.com/.

[4] James Noble and Charles We8mall Memory Software: Patterns for Systems with Limited Menfaojt-
ware Patterns Series. Addison-Wesley, 2000.

[5] James Noble and Charles Weir. A window in your pocket: Some small patterns for user interfaces. In
Proc. European Pattern Languages of Programike Hillside Group, Inc., 2001.

[6] Bruce SchneierSecrets and Lies: Digital Security in a Networked Worddhn Wiley & Sons, 2000.
[7] Thad Starner. Thick clients for personal wireless devitEEE Computer35(1):133-135, January 2002.

[8] Java 2 platform, micro edition. On the Web at http://java.sun.com/j2me/.


http://www.borland.com/jbuilder/mobileset/
http://www.embedded.oti.com/learn/vaesvm.html
http://www.embedded.oti.com/
http://java.sun.com/j2me/

	Introduction
	Background
	Thin Clients for Personal Wireless Devices
	Mobile Classic Blend---A Thin Client for Personal Wireless Applications
	Technology and Business Issues
	Other Challenges
	Summary and Conclusion

