Embedding Workflow Engines

Dragos A. Manolescu Santanu Paul

1 Introduction

Software developers have observed that certain parts of their applications are more change-prone
than others. For example, for product-centric applications such as those that determine premiums
for insurance policies or rates for calling plans, the most dynamic elements are the business rules
that govern how products and services are priced and promoted. Likewise, for process-centric
applications that handle mortgage loans or manage collaborative, team-oriented projects, the most
fluid aspect is the flow of information between humans, systems, and organizations.

An increasingly important goal of software design lies in isolating the highly dynamic elements
of software applications, and empowering non-technical, business users with tools to manage them.
Rule engines have emerged as a technology that permits business experts to control and maintain
pricing-centric applications by manipulating business rules, without any knowledge of the under-
lying source code. Similarly, workflow engines empower business experts to manage and adapt
process-centric applications by simply manipulating process flow diagrams, without touching the
software that manages and executes the processes.

Process-oriented applications are partially ordered sequences of steps that execute over time.
They are best implemented using a design principle cdl®d independencfl]. Each step in
a flow independent application encodes specialized business logic, and is executed by a process
actor (i.e., human, application, or an organization). The sequence of steps defines the process flow,
and is subject to continual change and tuning by domain experts. Flow independent applications
manifest a clear separation of concerns between business domain experts that program and maintain
process flows at the macro-level, and software developers that program and maintain each sequence
step at the micro-level. This separation of concerns yields significantly greater responsiveness to
changing business requirements; the high-level application logic or the “macro-program” can be
re-wired by business domain experts using graphical process management tools without depending
on software developers. Atthe same time, each individual step or “micro-program” can be modeled
as a context-free, reusable service, because they have little or no awareness of the process flows
that invoke them. The astute reader will note the similarity between flow independent design and
service-oriented architectures that are currently taking hold in the world of Web Services.

This article targets developers who are either considering embedding a workflow engine, or
should be. It provides a narrative on how Openpages, a software vendor that develops and markets
business applications for compliance and document management, selected a workflow engine for

its Openpages 4.x server. We cover issues such as identifying the workflow functionality necessary
to implement the process flows, assessing the degree of architectural alignment with the workflow
engine, evaluating integration efforts, and prioritizing a wide array of other factors. While we draw
heavily from our experience evaluating a dozen commercial workflow engines, narrowing it down

to three and finally selecting one, we focus on the process of selecting the right workflow engine
for the problem at hand rather than provide a comparative survey. This is an important distinc-
tion because the selected candidate is a function of the business drivers and cannot be determined
outside the business context.

2 Sidebar: A Brief History of Workflow

Since the late 1970s several generations of workflow systems have implemented a wide range of
process-intensive applications, from office automation through scientific experiments. The first
generation of such systems were hard to use beyond the particular applications for which they
were built. The second generation used a master-slave paradigm. A department or enterprise-class
workflow server orchestrated hundreds or thousands of simultaneous process flows, invoking ac-
tors such as humans and applications to perform the right steps in the right order. In other words,
the workflow server was the active master entity that invoked passive slave entities—applications
and humans—to perform their respective roles within a business process. Over the last few years
however, the model has begun to morph in a different direction. Increasingly, workflow function-
ality is being perceived as @mponenthat can be embedded within other business applications
and frameworks [2]. The business application becomes the active entity that delegates the manage-
ment of process-oriented business logic to an embedded workflow engine. This is the master-slave
paradigm in reverse, with the application as the master entity that controls when and how the work-
flow engine is marshalled. This emerging model has clear benefits. Developers building complex
applications can retain control over all aspects of functionality, and yet delegate to business domain
experts the maintenance of those select elements of business logic that are fluid and involve subject
matter expertise.

3 Embedded Workflow: Benefits and Risks

Making an informed decision about whether to embed a workflow engine or not requires per-
forming a return on investment (ROI) analysis. This analysis involves evaluating the benefits of
embedded workflow against its risks.

For an embedding application, a workflow engine provides several benefits:

Empowers Domain Experts Domain experts have direct access to the process representation and
can manipulate and adjust it. This translates into saving time and eliminating potential mis-
understandings between business analysts and programmers. For example, a Property and

Casualty expert can change the policy underwriting process without relying on application
programmers.

Ensures Flow IndependenceChanges in the business process typically involve workflow changes
only. Applications that use embedded workflow adapt better to changing business require-
ments. For example, a wireless carrier can entice customers to renew their yearly plans by
offering the first month free without changing how the billing system rates individual calls.

Accelerates Time-to-market at a Lower CostAn embedded workflow engine provides features
that otherwise would be too expensive in terms of time and money to implement on a per-
application basis. For example, a Laboratory Information Management System built around
a workflow engine can leverage the workflow history to comply with the Health Insurance
Portability and Accountability Act.

At the same time, embedded workflow engines pose certain risks:

Metaphor Mismatch The workflow engine may be inappropriate for the embedding application.
Certain workflow engines aim at enforcing high volume, repetitive processes that are rigid in
nature (the “claims processing” metaphor). Others aim at enabling collaborative processes
that allow for a significant degree of flow adjustment during execution (the “routing slip”
metaphor). Selecting a rigid enforcement engine for a collaborative application (or vice
versa) could lead to an implementation failure.

Lack of Control One of the obvious concerns of using an embedded workflow engine is the lack
of sufficient control over its features. Unless the source code for the workflow component
and the expertise for changing them are available, tailoring workflow features requires either
programmable extension points such as documented interfaces, abstract classes or pluggable
components (admittedly a tall order for most workflow engines we know), or a great deal of
willingness from the workflow vendor to be adaptable.

Customization Costs Initially a workflow engine provides faster time-to-market for the embed-
ding application. However, as new application requirements emerge, the cost of tailoring the
workflow engine accordingly is hard to estimate. Additionally, with enhancement requests
from several clients, the workflow engine vendor can become a bottleneck. The problem es-
calates if the architectural assumptions underlying the application and the workflow engine
are not in alignment [3].

To summarize, embedding a workflow engine has its rewards as well as risks. On the positive
side, the workflow engine can accelerate time-to-market and provide rich workflow functionality
at a low cost. On the negative side, the workflow engine can limit the degrees of freedom for
the application developer, and lead to costly implementation failures if the requirements are not
well understood and analyzed in advance. However, unless the workflow needs of the embedding
application are truly esoteric, the benefits of embedding a workflow engine usually outweigh the
risks.

4 A Case Study

The case study involves the Openpages 4.x Server (henceforth called OP4), a J2EE framework
that serves as a foundation for the rapid development and deployment of business applications
ranging from marketing compliance, financial reporting, corporate governance, and brand manage-
ment. The vision of OP4 is to provide a rich platform of services such as document management,
multi-channel publishing, workflow management, and collaboration, so that these can be readily
combined to solve a wide class of business problems that are product- and process-centric. To mo-
tivate the purpose of embedding a workflow engine within OP4, let’s look at an applications built
with it.

Consider a financial institution wishing to implement an application that will allow its market-
ing team to accelerate the delivery of key marketing messages to customers, investors, employees
and business partners. Increasingly, most financial institutions are engaging in multi-channel com-
munications across Web, email, print, syndication, and wireless channels. The complexity of the
undertaking is further exacerbated by the fact that the financial industry is subject to strict compli-
ance rules by regulatory agencies. For example, all marketing collateral produced by a brokerage
firm is subject to advertising compliance rules managed by the National Association of Securities
Dealers, an agency that acts in concert with the Securities and Exchange Commission. The cost of
making material errors in marketing collateral is prohibitively high.

In a typical scenario, a marketing communications manager may be responsible for running a
campaign to launch a new financial product, say a new annuity product. The campaign involves
the development and delivery of three kinds of content:

e A new section to the public Web site on mutual funds
e A print marketing brochure that will be direct mailed to investors

e An email-based awareness campaign to notify select, high net worth investors

The productivity application places the marketing communications manager at the hub of a
coordination workflow (Figur€|1). Using the application the communications manager requests
original content from copy writers and product managers, routes the content for editorial review
by professional editors, requests legal compliance reviews from the legal department, and obtains
approval from senior management. Each participant in the process has his or her own role-specific
dashboard to create, review, and approve content. Once the content creation and collaborative
review process completes, the communications manager forks off the process to three channel-
specific groups. The Web group styles and publishes the content on Web sites using HTML
templates; an advertising agency lays out the content using Quark Xpress and produces a print
brochure; and an email communications group initiates an email campaign to deliver the informa-
tion to select customers.

Implementing the marketing compliance application with a workflow engine provides:

Print
Request _ Request Copy
Production Content Writer
Marketing
Web Communications
Manager
,?
roduct
Email @@C\ @\ % T 0@6‘ Manager
mai =
3 S
>
(6]
. 14
enior .
Management Editor

Legal

Figure 1: Marketing compliance application workflow

e The ability to change what a marketing campaign involves without changing the application
code.

e Automatic routing of content to relevant participants in the right order, based on predeter-
mined business workflows and compliance rules.

e Complete tracking and control of the project by the communications manager during the
course of the project, including altering the flow of content midstream to accommodate
emerging business needs.

A rich audit trail that captures all events and decisions made over the course of the project.

5 Evaluating Workflow Engines

Following the buy versus build decision we assembled a cross-functional team to conduct the eval-
uation and make a recommendation. The team consisted of key members of the engineering and
product management teams, and included people with past experience with workflow and collabo-
ration technology.

The team decided that the evaluation framework would seek to address, for each product, three
broad areas of concern:

Functional Requirements What can the workflow engine do?
Technology Constraints How has the engine been designed and built?

Business RequirementsWhat are the implications of doing business with the vendor?

Next we look at how the above questions translate into specific criteria. Based on the OP4’s
business drivers we describe the priority we assigned to each critehigifor must haves,
mediumfor should haves, oiow for nice to haves. Tablg 1 lists the evaluation criteria and their
priorities in the context of OP4. Using the framework to select a workflow engine for other appli-
cations requires deriving these priorities from their business drivers.

5.1 Functional Requirements

In the context of workflow engine evaluation functional requirements revolve around the supported
workflow features. Eliciting these requirements and assigning priorities is problem-dependent and
involves significant input from domain experts. For OP4 we analyzed a set of representative work-
flows.

Area | Requirement | Priority |
Workflow constructs High
Routing slip metaphor High
Transactional aspect Low
Specification by business users Medium
Workflow template management High
Interpreted High
Access control Medium
Workflow Role-based assignment Medium
Composite workflows Medium
Integration with external services Medium
Audit trails High
Monitoring and administration Medium
Meta-data properties Medium
Work assignment policies Medium
Disconnected operation Low
Technical infrastructure High
Open APIs High
XML compliance Medium
Technology Embeddable presentation componentdedium
Email integration High
Directory services integration Medium
Compact footprint High
Source code Low
Business Vendor support Medium
Pricing Model High

Table 1: Summary of requirements and constraints

5.1.1 Workflow Constructs

Many workflow systems use an activity-based process model [4]. Workflow steps represent activity
nodes. Control nodes such as conditionals, fork, join, and iteration determine the flow of control.
Activities themselves may be performed by humans or applications; they can even be delegated
to other self-contained workflows, thus providing a way to hierarchically decompose a complex
workflow into a series of interconnected, nested sub-workflows.

Since OP4 delivers a wide range of collaborative content applications, the workflow capabilities
of the framework must be sufficiently rich. We assignddgh priority to the availability of a rich
set of control structures.

5.1.2 Routing Slip Metaphor

Different workflow systems have different design goals. One class of workflow systems revolve
around the “routing slip” metaphor; these systems are proficient in routing electronic documents
among a large set of workflow actors, much as paper documents are often routed between people
using routing slips.

A typical OP4 scenario involves the collaborative creation of documents. These workflows
follow the classic routing slip model. For example, a scenario may involve a content editor, an
author, and a reviewer. The editor assigns an article to an author and a reviewer. The workflow
system creates work assignments in the actors’ work lists at the appropriate times. It also moves
the work (i.e. the request, draft document, reviewed document, version history, annotations, etc.)
between the various actors.

Since the routing slip metaphor is critical to the success of a workflow engine within OP4, we
assigned it digh priority.

5.1.3 Transactions

A different class of workflow systems has traditionally focused on transactions. For example, most
workflow systems in the financial and insurance industry are designed to optimize the processing
of repetitive transactions such as mortgage applications, trade order flows, and insurance claims.
In such scenarios, the workflow engine acts as an orchestrator of multi-step transactions that ma-
nipulate database records while simultaneously ensuring ACID properties (atomicity, consistency,
independence, and durability) and high throughput volume.

Since OP4 is a framework for collaborative, human-centric applications, and not for transac-
tional applications, we assignedaav priority to this aspect.

5.1.4 Workflow Specification by Business Users

Workflow systems provide different means of specifying workflow definitions. Graphical process
editors are a popular choice. Graphical editors allow users to define workflows by dragging pro-
cess elements on a canvas, connecting and configuring them without any programming. Packaged
workflow applications typically include graphical process editors.

In contrast, other workflow systems rely on programmatic methods for workflow specification,
such as scripting languages. This raises the skill set barrier in terms of who can define and manage
workflow specifications in an organization. Usually, they require technical personnel to get actively
involved.

OP4 must support self-service applications for business users. They should be able to design
and specify workflows without the active participation of technical personnel. As a result we
assigned anediumpriority to this feature.

5.1.5 Workflow Template Management

Many workflow systems support template management. Templates are valuable for encoding “stan-
dard” (sub-)processes such as travel reimbursement or telecommunications provisioning. Workflow
users can quickly define full-fledged workflows by combining these templates and customizing
them to the problem at hand.

In the OP4 model workflow owners customize and instantiate workflow templates. For exam-
ple, a process template may prescribe the steps required to publish a document. The amount of
customization required to use this template in a workflow involves providing the work assignments
and the time frame for completion.

We assigned high priority to workflow template management.

5.1.6 Interpreted

First generation workflow systems made a clear distinction between build-time and run-time. Build-
time involved defining workflow templates and translating their specifications into a compiled rep-
resentation. Run-time involved executing instances of the compiled representation. However, this
drastic separation between build- and run-times led to a well-deserved reputation that workflow
technology was too rigid for practical use. Most workflow engines address this problem by treating
a workflow as a set of rules to be interpreted at run time.

The interpreted approach to workflow execution has two major benefits, and both are of sig-
nificant value to OP4. First, it allows for dynamic workflow instance modification. At run time
business users deal with emerging exceptions or special situations by altering the routing rules. For
example, a process may involve a legal compliance approval step. In one workflow instance the
actors who produced the document may have worked closely with the legal staff during the creation
of the document. Since the legal staff already knows the content, they may elect to skip the legal
compliance step, especially if there is a looming deadline.

The second benefit has to do with the late binding of routing rules to a workflow instance. For
example, in some collaborative projects it may not be feasible to completely define the workflow
before execution begins. In other words, late binding allows the workflow to be complete its
definition at run time.

OP4 regards workflow as a facilitating rather than an enforcing technology. Workflow actors
are knowledgeable and drive the process. The workflow engine must help them perform their work
and take over the mechanical parts of the process. It must not get in the way of their decision
making processes. An interpreted approach is critical to this philosophy; we assigneiglit a
priority.

5.1.7 Access Control

Workflow systems typically permit control of several operational aspects of workflow execution.
For example, most workflow systems let their users start, stop, and pause workflow instances. More

advanced functionality includes changing routing and work assignments, updating tasks, and even
opening work items assigned to others.

OP4 workflows involve many actors. From these, only a subset of designated actors should
have access to the workflow controls. For example, only the owner of a workflow instance should
have permission to change its routing midstream. Similarly, not every actor should have permission
to access every workflow template. The workflow engine should provide a means for defining
permissions and enforcing them. We assignetkdiumpriority to this feature.

5.1.8 Role-based Assignment

A one-to-one mapping between activities and actors is not flexible. For instance, a workflow defini-
tion could specify that “John will review the article about Web services after Bill writes it.” Should
John become unavailable, the workflow can no longer execute.

Roles solve this problem by adding a level of indirection. The workflow definition refers to
workflow actors by roles (or groups) rather than name. Roles specify the type of interactions actors
can have with the workflow. In the previous example, a workflow definition that specifies “A
reviewer will review the Web services article” is more flexible. A separate functional component
such as a directory service usually maps roles to actors, thus providing the information that John is
a reviewer.

In the context of OP4 we assignedreediumpriority to this feature.

5.1.9 Composite Workflows

Some workflow systems support hierarchical decomposition. Hierarchical decomposition breaks a
workflow into smaller sub-workflows. In other words, an entire workflow can represent a step in
another workflow. Sometimes this decomposition allows several workflows to share common sub-
workflows. In other situations it allows sub-workflows to execute within different organizational
boundaries.

In the context of OP4 certain organizational processes are common across many different situ-
ations; for example, the legal compliance workflow can be shared among several line of business
workflows. When combined with dynamic workflow modification, the ability to introduce a new
activity (e.g., a legal review step) into a workflow at run-time and then bind the step to a predefined
legal compliance workflow can deliver a lot of power and flexibility into the hands of a business
user. For these reasons, we assignatediumpriority to this feature.

5.1.10 Integration with External Services

Workflow engines deployed in an enterprise setting must have the ability to access external sys-
tems that provide workflow-relevant data and services. For example, OP4 could employ a docu-
ment translation service. A workflow instance may create a document in English, but it might be
desirable to translate the document into Russian before its publication. In an ideal world, the final
step of the workflow would be an automatic invocation of the external translation service, with the

10

original document as an input parameter. Once the translation is completed, the Russian version of
the document would be returned to the workflow.

In addition to invoking external services, the workflow system should also be able to generate
and respond to events to and from the external world. For example, a certain OP4 application may
involve triggering a workflow when a new file is uploaded into a specific folder. It may also involve
firing an event when a document has been published to a Web site so that interested subscribers can
take action.

To accommodate the above scenarios, a workflow engine for OP4 should provide an event-
based communication and coordination mechanism. We assignediampriority to this feature.

5.1.11 Audit Trails

A major benefit of workflow systems is that they record the state of running processes as they
unfold. The audit trail information can serve several purposes. For example, with the increased
scrutiny of business practices in the financial industry, audit trails are becoming a key compliance
requirement mandated by the Securities and Exchange Commission and the National Association
of Securities Dealers. Similarly, in the healthcare industry, the Health Insurance Portability and
Accountability Act mandates audit trails for medical systems using any electronic means of storing
patient data and performing claims submission. At a more mundane level, historic information
provides an excellent way to perform process analysis in order to streamline and optimize them.

Given its focus on the financial industry, OP4 requires strong audit trail capabilities. We as-
signed ahigh priority to this feature.

5.1.12 Monitoring and Administration

Workflow systems manage the runtime data corresponding to each running workflow. A workflow
monitor application enables administrators and power users to examine this information at run time.
Possible actions may include performing diagnostics and gathering summary reports of workflows
in progress, as well as controlling their execution via start, stop, suspend and resume commands.
These permissions must be role based and protected by access control rules.

Given the project-oriented and collaborative nature of OP4 applications, the ability to visualize
and control the exact state of workflows in the system hagdiumpriority.

5.1.13 Work Assignment Policies

The interaction between a workflow system and workflow actors can be governed by many different
policies. The specific work assignment policy that makes sense in a given scenario depends on the
business context. The most common policy has the workflow engine pushing work items to specific
individuals via dedicated worklists. Other policies may involve a centralized work item queue that

is accessible to a pool of actors who pick work items based on expertise. This model is popular in
exception handling workflows in financial trade flows; the expertise to know what is wrong with

a specific trade requires domain experience that is beyond the scope of most workflow engines.

11

Alternately, role based assignment policies may involve work items being assigned to a group of
resources. The first actor to accept becomes the owner; the work item is then retracted from the
other worklists.

The functional requirements for OP4 framework called for a dedicated worklist metaphor with
role-based work assignment. Complex work assignment policies are not critical to the success of
the framework. We assignedhaediumpriority to this feature.

5.2 Technology Constraints

The technology constraints focus on the platform (software and hardware) and the integration
points. Several constraints from Taple 1 are general; we have omitted them from this section.

5.2.1 Open Application Programming Interfaces

Open and documented programmatic access to all aspects of the workflow engine functionality lie
at the focal point of our evaluation. The programmatic access includes the creation and manage-
ment of workflow templates; the ability to start, stop, suspend, and resume workflow instances; the
ability to attach documents to workflows, the assignment and management of tasks to and through
task lists; adapting and modifying workflows on the fly; and managing audit trails and reporting
capabilities.

We determined that securing access to all of the above functions using Java classes and meth-
ods, as well as javadocs, programming guides, and cookbookshigis @riority.

5.2.2 XML Compliance

XML is central to the way OP4 manages documents, content, and their versions. Likewise, the
ability to represent workflow templates as XML documents facilitates version control of templates,
as well as interoperability. In addition, retrieving the state of a workflow instance as XML allows
for superior reporting capabilities in the long run. Finally, a workflow engine that can also respond
to XML messages would be of considerable value as well.

While XML compliance is a desirable and elegant feature, it is not critical to the success of
OP4. We assigned itmediumpriority.

5.2.3 Embeddable Presentation Components

OP4 applications are always Web-based without client-side components. Therefore, any presen-
tation components that accompanies the workflow engine such as graphical workflow designers,
worklist controls, workflow monitoring tools, and so forth should be browser-based. Embeddable
HTML and Java applets would be valuable because OP4 could reuse them.

To accelerate OP4 development we assignedediumpriority to the availability of web-
enabled presentation components for the workflow engine.

12

5.3 Business Requirements

The business requirements focus on vendor- and product-related issues.

5.3.1 Source Code

Ideally application developers have access to the source code of all third party software components
they use. However, source code represents intellectual property to the software vendors. As a rule,
they are loathe to part with it—exceptions to this rule do exist, however. In addition, to the best of
our knowledge, no competitive open source workflow systems are available yet.

Nevertheless, the absence of source code should not be a road block. It can be equally valuable
to extend a workflow engine designed for growth, providing clean, well-documented object ori-
ented APIs. In such situations we recommend that the workflow vendor escrows the source code
with a credible third party escrow agency. This protects application developers in case the work-
flow vendor declares bankruptcy or goes out of business. Such an event then triggers the release of
the source code to the application developer.

In the light of these considerations we assignéalapriority to the availability of source code.

5.3.2 Vendor Support

Assuming that workflow engine source code is not available, the application developers must have
very clear contractual agreements with the workflow vendor regarding support responsibilities.
To keep support costs low we recommend that the developers take responsibility for first level
support, i.e., supporting the workflow needs of the users of the embedding application. However,
the application developers must necessarily rely on the vendor for second level support, i.e., dealing
with bug fixes and other issues that cannot be resolved without source code access.

A second level support agreement must also explicitly spell out the resolution process and lev-
els of responsiveness expected from the workflow vendor when bugs or other workflow engine
problems are reported. For example, an agreement may specify that the workflow vendor must
acknowledge all reported problems within forty eight hours. Furthermore, it may also specify that
based on the severity of the problem, the vendor must provide a resolution within one, two, or four
weeks. The agreement should also provide for free upgrades to certain future releases of the work-
flow engine, and provide for sufficient number of training classes for the application developer’s
engineering staff. Typically, these are all issues that are best resolved through negotiation.

Based on the importance of the availability of second level support, we have assigned it a
mediumpriority.

5.3.3 Pricing Model

Last but not least, the pricing model is an important (and regrettably sometimes the only) consid-
eration in choosing software components. Workflow vendors are waking up to the opportunity of
licensing their products as embeddable components rather than enterprise software. However, in

13

our experience few workflow vendors have adjusted their pricing models to reflect the needs of
application developers.

Workflow vendors interested in capturing this emerging market must perceive application ven-
dors aschannelgather than end customers. As such, pricing models that emphasize upfront soft-
ware licensing fees will not win favor with application developers. Instead, workflow vendors
must understand the business model of the application vendor and tailor their pricing models ac-
cordingly. Application developers earn revenue when their products are sold. They are much more
likely to share with the workflow vendor a percentage of the revenue than pay large upfront fees.

Astute workflow vendors are developing OEM pricing models for application developers that
have two components: a modest upfront fee, and a royalty-based arrangement where the workflow
vendor can participate in successful sales of the application, as a percentage of total revenue.

Given the above considerations we assignduiga priority to a royalty-based pricing model
with a low upfront fee.

5.4 Evaluation Summary

We distilled the answers from the vendors who answered the (informal) request for proposals into
a comparison table. The example from Tglle 2 shows the results for three productieretes

that the corresponding workflow engine is better; denotes that it is worse, and a 0 means that
there is no significant difference. Since we focus on the evaluation process as opposed to specific
outcomes, the table does not disclose the identities of the evaluated products.

Upon assembling vendor responses we computed a cumulative score for each product by mar-
rying the score on each criterion with the priority assigned to that criterion. Effectively, this was a
quantitative calculation that combined the information in Tapjes 1 &nd 2. At the end of this phase
Fujitsu Software’s i-Flow scored the highest.

In the next phase we performed a prototyping exercise to test i-Flow in context. We used
a simplified version of the workflow shown in Figurg 1. The results of the prototyping phase
provided enough information to make a final decision.

More than a year has elapsed since we recommended i-Flow. In hindsight, choosing it was
a sound decision. Certainly, there have been some bumps along the way. Overall the evaluation
described here worked well and provided us with early insight into the areas of potential risk.

6 Summary and Conclusions

Software developers are turning to workflow technology to implement their process-oriented ap-
plications. Consequently, new as well as familiar workflow vendors are beginning to introduce
embeddable workflow engines into the market.

Embeddable workflow engines address different requirements relative to full-fledged workflow
management systems, and serve a different audience. In addition to workflow capabilities such
as process models, control constructs, work assignment policies, ad-hoc workflow and so forth,

14

embeddable workflow engines must address additional needs such as integration with other appli-
cation components, the ability to customize through programming techniques, and architectural
alignment with the embedding application.

This article presented a practical evaluation framework for embeddable workflow engines. We
began with an evolutionary sketch, emphasizing the paradigm shift from stand-alone controlling
applications to components of modern enterprise architectures. We then discussed the benefits and
risks of embedded workflow, and introduced a case study providing the context for the evaluation
framework. We discussed the evaluation along the functional, technological and business dimen-
sions, and concluded by showing a subset of the framework’s outputs applied to our case study.

Workflow engine evaluation covers a broad range of issues, such as framing the process flows,
identifying the workflow features necessary to implement them, assessing the degree of architec-
tural alignment, evaluating integration efforts, and prioritizing other technical factors. Our frame-
work represents a blueprint for practitioners seeking to embed a workflow engine suitable for their
application. This blueprint was instrumental in our making a sound decision about a dozen work-
flow engines. Practitioners evaluating workflow engines could reap the benefits of a proven evalu-
ation framework by adapting and extending it with new features and constraints.

About the Authors

Dragos Manolescuis a software architect with ThoughtWorks, an application development and
consulting company. His research interests include lightweight workflow systems, software
architecture and object technology. His research publications are available on the web from
http://micro-worklfow.com/. Dragos has earned a Ph.D. in Computer Science from
the University of lllinois at Urbana-Champaign for his research on workflow architectures.
Contact him atimanolescuGthoughtworks. com.

Santanu Paul Santanu Paul is a Vice President at Virtusa Corporation, a global software services
firm, and General Manager of its technology center in India. He has served as CTO of
product companies such as Openpages and Viveca, and as a research staff member at IBM’s
T. J. Watson Research Center. Santanu has a Ph.D. in Computer Science from the University
of Michigan, and a Bachelor of Technology in Computer Science from the Indian Institute
of Technology. His areas of interest include software engineering, architecture, workflow
management, and content management. He has published over twenty papers and articles
and has multiple US patents, awarded or pending. Contact hipeat Gvirtusa.com.

References

[1] Frank Leymann and Dieter Rollé?roduction Workflow—Concepts and Techniqéentice-
Hall, Upper Saddle River, New Jersey, 2000.

15

http://micro-worklfow.com/
dmanolescu@thoughtworks.com
spaul@virtusa.com

[2] Dragos A. ManolescuMicro-Workflow: A Workflow Architecture Supporting Composi-
tional Object-Oriented Software DevelopmeRh.D. thesis, University of lllinois, Urbana-
Champaign, October 2000.

[3] David Garlan, Robert Allen, and John Ockerbloom. Architectural mismatch or why it's hard
to build systems out of existing parts. Rroc. 17th International Conference of Sofwtare
Engineering Seattle, WA, 1995.

[4] Andrzej Cichocki, Abdelsalam Helal, Marek Rusinkiewicz, and Darrell Woaltkflow and
Process Automation—Concepts and Technol&giywer Academic Publishers, 1998.

16

Requirement

Product

Workflow
Requirements

Workflow constructs

Routing slip metaphor

Transactional aspect

Specification by business users

Workflow template management

o|lo|lo|o|+|| >

Interpreted

Access control

Role-based assignment

Composite workflows

Integration with external services

+lo|+ |+

Audit trails

Monitoring and administration

Meta-data properties

Work assignment policies

o|lo|o|+|+|o|+|+|olo|oj+ o+ O

Disconnected operation

Technology
Constraints

Technical infrastructure

Open APIs

XML compliance

Embeddable presentation compone

Email integration

Directory services integration

Compact footprint

Business
Requirements

Source code

Second level vendor support

olo|o|l+|ojo|B+|ojo|ol+|o| o |

Price

+|+|olol | |ololololol+|+| oo+ |ol oo o o+|o o

olojo|+|olojo|+|o|o] |

Table 2: Comparison table for 3 workflow engines

17

	Introduction
	Sidebar: A Brief History of Workflow
	Embedded Workflow: Benefits and Risks
	A Case Study
	Evaluating Workflow Engines
	Functional Requirements
	Workflow Constructs
	Routing Slip Metaphor
	Transactions
	Workflow Specification by Business Users
	Workflow Template Management
	Interpreted
	Access Control
	Role-based Assignment
	Composite Workflows
	Integration with External Services
	Audit Trails
	Monitoring and Administration
	Work Assignment Policies

	Technology Constraints
	Open Application Programming Interfaces
	XML Compliance
	Embeddable Presentation Components

	Business Requirements
	Source Code
	Vendor Support
	Pricing Model

	Evaluation Summary

	Summary and Conclusions

